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ABSTRACT

We use measurements of the growth of cosmic structure, as inferred from the observed
evolution of the X-ray luminosity function (XLF) of galaxy clusters, to constrain de-
partures from General Relativity (GR) on cosmological scales. We employ the popular
growth rate parameterization, Ωm(z)γ , for which GR predicts a growth index γ ∼ 0.55.
We use observations of the cosmic microwave background (CMB), type Ia supernovae
(SNIa), and X-ray cluster gas-mass fractions (fgas), to simultaneously constrain the
expansion history and energy content of the Universe, as described by the background
model parameters: Ωm, w, and Ωk, i.e., the mean matter density, the dark energy
equation of state parameter, and the mean curvature, respectively. Using conserva-
tive allowances for systematic uncertainties, and in particular for the evolution of
the mass–luminosity scaling relation in the XLF analysis, we find γ = 0.51+0.16

−0.15 and

Ωm = 0.274+0.020
−0.018 (68.3 per cent confidence limits), for a flat cosmological constant

(ΛCDM) background model. Allowing w to be a free parameter, we find γ = 0.44+0.17
−0.15.

Relaxing the flatness prior in the ΛCDM model, we obtain γ = 0.51+0.19
−0.16. Our analysis

provides the tightest constraints to date on the growth index. We find no evidence for
departures from General Relativity on cosmological scales.

Key words: cosmology:observations – cosmology:cosmological parameters – cosmol-
ogy:theory – X-ray clusters – modified gravity – dark energy

1 INTRODUCTION

Recently, using the observed evolution of the X-ray luminos-
ity function (XLF) of massive galaxy clusters, Mantz et al.
(2008) (hereafter M08) presented new constraints on dark
energy from measurements of the growth of cosmic struc-
ture. These results are consistent with and complementary
to those based on measurements of the cosmic expansion his-
tory, as deduced from distances to type Ia supernovae (SNIa)
(Riess et al. 1998; Perlmutter et al. 1999; Davis et al. 2007;
Kowalski et al. 2008), the gas mass fraction in galaxy clus-
ters (Allen et al. 2004; Rapetti et al. 2005, 2007; Allen et al.
2008), and Baryon Acoustic Oscillations in the distribu-
tion of galaxies (Cole et al. 2005; Eisenstein et al. 2005).
In combination with independent measurements of the cos-
mic microwave background (CMB) (Spergel et al. 2003;
Spergel et al. 2007; Komatsu et al. 2008), such measure-
ments argue for a universe that is spatially flat, with most
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matter being cold and dark, and with the energy density
being currently dominated by a cosmological constant Λ.

Due to severe theoretical problems associated with
the cosmological constant, a plethora of other dark en-
ergy models have been proposed (for a review, see
Frieman et al. 2008). Recent works (Carroll et al. 2006;
Caldwell et al. 2007; Hu & Sawicki 2007; Amin et al. 2008;
Bertschinger & Zukin 2008, and references therein) have
studied the possibility that late–time cosmic acceleration is
not driven by dark energy but rather by gravity. These au-
thors propose various frameworks to test for both time and
scale-dependent modifications to GR at late times and on
large scales. Although, currently, modifications to GR may
be argued to be theoretically disfavoured, it is essential to
test for such deviations using powerful, new data that is
now becoming available. To measure departures from GR
on cosmological scales, experiments sensitive to its dynam-
ical effects are required. Such experiments include, for ex-
ample, the cross-correlation of the integrated Sachs-Wolfe
(ISW) effect with other matter tracers; galaxy clustering;
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weak gravitational lensing; or cluster number counts using,
e.g., X-ray selected samples.

General Relativity has been thoroughly tested from
laboratory to Solar System scales. However, GR has only
just begun to be tested on cosmological scales. Several
authors have recently investigated a simple parame-
terization of the growth rate, Ωm(z)γ (first introduced
by Peebles 1980), to test for time–dependent modifica-
tions to GR (see e.g. Linder 2005; Sapone & Amendola
2007; Polarski & Gannouji 2008; Gannouji & Polarski
2008; Acquaviva et al. 2008; Ballesteros & Riotto 2008;
Mortonson et al. 2008; Thomas et al. 2008). For a growth
index, γ, approximately 0.55, this parameterization ac-
curately models the growth rate of GR. Some authors
(Nesseris & Perivolaropoulos 2008; Di Porto & Amendola
2008; Wei 2008; Gong 2008) have recently estimated con-
straints on γ by combining results from measurements of
redshift space distortions and evolution in the galaxy power
spectrum, as well as measurements of the normalization of
the matter power spectrum, σ8(z), from Lyman-α forest
data. Using current cosmic shear and galaxy clustering
data at low redshift, Dore et al. (2007) placed constraints
on scale-dependent modifications to GR. These authors
constrained two phenomenological, although physically
motivated, modifications of the Poisson equation on
megaparsec scales (from 0.04 to 10Mpc).

In this letter, we use the XLF experiment developed by
M08, and data from the ROSAT Brightest Cluster Sample
(BCS; Ebeling et al. 1998), the ROSAT-ESO Flux Limited
X-ray cluster sample (REFLEX; Böhringer et al. 2004), the
MAssive Cluster Survey (MACS; Ebeling et al. 2001) and
the 400 square degrees ROSAT PSPC cluster survey (400sd;
Burenin et al. 2007), to constrain departures from GR on
scales of tens of megaparsecs (∼ 50 Mpc) over the redshift
range z < 0.9. We use CMB (Komatsu et al. 2008), SNIa
(Kowalski et al. 2008), and cluster fgas data (Allen et al.
2008) to simultaneously constrain the background evolu-
tion of the Universe. We examine three background models:
flat ΛCDM, flat wCDM and non-flat ΛCDM. We employ
a Markov Chain Monte Carlo (MCMC) analysis, account-
ing for the dominant systematic uncertainties in the experi-
ments. Our results represent the first constraints on γ from
the observed growth of cosmic structure in galaxy clusters.

2 PARAMETERIZING THE GROWTH OF

COSMIC STRUCTURE

In GR, the evolution of the linear matter density contrast
δ ≡ δρm/ρm, where ρm is the mean comoving matter den-
sity and δρm a matter density fluctuation, can be calculated
in the synchronous gauge by solving the scale-independent
equation

δ̈ + 2
ȧ

a
δ̇ = 4Gπρmδ , (1)

where ‘dot’ represents a derivative with respect to time, and
a is the cosmic scale factor.

Following Lahav et al. (1991) and Wang & Steinhardt
(1998), several authors (see e.g. Huterer & Linder 2007;
Linder & Cahn 2007) have parameterized the evolution of
the growth rate as f(a) ≡ d ln δ/d ln a = Ωm(a)γ . Recasting
this expression we have the differential equation

dδ

da
=

Ωm(a)γ

a
δ , (2)

where γ is the growth index, and Ωm(a) = Ωma−3/E(a)2.
Here, E(a) = H(a)/H0 is the evolution parameter, H(a) the
Hubble parameter, and H0 its present–day value. It has been
shown (see e.g. Nesseris & Perivolaropoulos 2008) that for
γ ∼ 0.55, equation 2 accurately reproduces the evolution of
δ obtained from equation 1. Using the Einstein-Boltzmann
code camb

1 (Lewis et al. 2000), we find that for all scales,
redshifts and values for the cosmological parameters of in-
terest here, the linear growth δ(a) obtained from equation 2
with γ ∼ 0.55 is accurate to better than 0.1 per cent. There-
fore, we adopt γ ∼ 0.55 as a reference, from which to deter-
mine departures from GR.

Equation 2 provides a phenomenological model for the
growth of density perturbations that allows us to test depar-
tures from GR without adopting a particular, fully covari-
ant modified gravity theory. In the absence of such an al-
ternative gravity theory, we perform consistency tests using
convenient parameterizations of the background expansion,
within GR. We investigate three expansion models that are
well tested with current data: flat ΛCDM, a constant dark
energy equation of state, wCDM2, and non-flat ΛCDM. We
can write a general evolution parameter for these models
as 3

E(a) =
h

Ωm a−3 + Ωde a−3(1+w) + Ωk a−2
i1/2

, (3)

where w = −1 for the ΛCDM models, Ωde is the cosmolog-
ical constant/dark energy density, and Ωk is the curvature
energy density, which is 0 for flat models.

The growth rate Ωm(a)γ conveniently tends to 1 in the
matter dominated era (high z), thereby matching GR for
any value of γ. Thus, we naturally match the initial value of
δ in equation 2 at high-z with that of GR (see section 3).

3 ANALYSIS OF THE X-RAY LUMINOSITY

FUNCTION

We have incorporated the growth index parameterization
into the code developed by M08. Briefly, in the XLF analysis,
we compare X-ray flux-redshift data from the cluster sam-
ples to theoretical predictions. The relation between clus-
ter mass and observed X-ray luminosity is calibrated using
deeper pointed X-ray observations (Reiprich & Böhringer
2002).

3.1 Linear theory

The variance of the linearly evolved density field, smoothed
by a spherical top-hat window of comoving radius R, enclos-
ing a mass M = 4πρmR3/3, is

1 http://www.camb.info/
2 This model is only used as a expansion model, and does not
assume the presence of dark energy. Therefore, we do not include
dark energy density perturbations. The evolution of the density
perturbations, due only to matter, are modelled using γ.
3 Although massless neutrinos and photons are included in the
analysis, they are neglible at late times.
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σ2(M, z) =
1

2π2

Z

∞

0

k2P (k, z)|WM(k)|2dk , (4)

where WM(k) is the Fourier transform of the window func-
tion, and P (k, z) is the linear matter power spectrum as a
function of the wavenumber, k, and redshift, z,

P (k, z) ∝ knsT 2(k, zt)D(z)2 . (5)

Here, ns is the scalar spectral index of the primordial fluc-
tuations, T (k, zt) is the matter transfer function at redshift
zt, and

D(z) ≡
δ(z)

δ(zt)
=

σ(M,z)

σ(M, zt)
(6)

is the growth factor of linear perturbations, normalized
to unity at redshift zt. We choose zt = 30, well within
the matter dominated era (Bertschinger & Zukin 2008). Us-
ing camb, we calculate T (k, zt) assuming that GR is valid
at early times (z > zt) and that modifications to GR are
scale-invariant. For z < zt, we calculate D(z) using equa-
tion 2.

3.2 Non-linear N-body simulations

Using large N-body simulations, Jenkins et al. (2001) and
Evrard et al. (2002) showed that the mass function of dark
matter halos can be conveniently fitted by the expression

f(σ−1) ≡
M

ρm

dn(M, z)

d ln σ−1
= A exp

`

−| ln σ−1 + B|ǫ
´

, (7)

where A = 0.316, B = 0.67, and ǫ = 3.82 (Jenkins et al.
2001). These fit values were determined using a spherical
overdensity group finder, at 324 times the mean matter den-
sity. This formula is approximately ‘universal’ with respect
to the cosmology assumed. As in M08, we use this formula to
predict the number density of galaxy clusters, n, at a given
M and z.

The precision and universality of equation 7 have
been tested for a wide range of cosmologies, in-
cluding: models with constant w (Kuhlen et al. 2005;
Lokas et al. 2004); models with evolving w(z) (Klypin et al.
2003; Linder & Jenkins 2003; Mainini et al. 2003); mod-
els with coupling between dark energy and dark mat-
ter (Maccio et al. 2004); early dark energy models
(Francis et al. 2008; Grossi & Springel 2008); and a mod-
ified gravity model, f(R) (Schmidt et al. 2008)4. Recently
Warren et al. (2006) and Tinker et al. (2008) have also re-
examined this mass function using a larger suite of simula-
tions.

Despite the fact that equation 7 provides a useful ap-
proximation for a wide range of models, further simulations
will be essential to determine its limitations for more com-
plex tests of modified gravity and clustering dark energy
models.

4 These authors find that for f(R) models comfortably compati-
ble with Solar System tests, equation 7 provides a good approxi-
mation, within the relevant mass range and uncertainty we allow.

3.3 Mass–luminosity relation

Following M08, we employ a power-law mass–luminosity
relation, assuming self–similar evolution between the
mass and X-ray luminosity, L, of massive clusters (e.g.
Bryan & Norman 1998). We emphasize, however, that we
include a generous allowance for departures from self–
similarity, encoded in the parameter ζ,

E(z)M∆ = M0

»

L

E(z)

–β

(1 + z)ζ . (8)

Here M∆ is the cluster mass defined at an overdensity of ∆
with respect to the critical density, and log M0 and β are
model parameters fitted in the MCMC analysis.

As in M08, we assume a log-normal intrinsic scatter in
luminosity for a given mass, η, including this as a model
parameter. It is possible that this scatter may evolve with
redshift (O’Hara et al. 2006; Chen et al. 2007); we, there-
fore, parameterize the evolution in the scatter as

η(z) = η0 (1 + ηzz) , (9)

where η0 is the intrinsic scatter today, and ηz is a parameter
that allows for linear evolution in the scatter. Since current
data are not able to measure this evolution (O’Hara et al.
2007), we employ the same conservative prior on ηz used in
M08 (see below).

3.4 Priors and systematic allowances

As in M08, our XLF analysis includes five parameters (A,
ζ, ηz, B, and sb)5 that are not constrained by current data.
We apply the same conservative priors on these parameters
as M08.

We apply a Gaussian prior on A, with a mean value of
0.316, and standard deviation of 20 per cent. This devia-
tion conservatively spans the theoretical uncertainty in the
mass function of equation 7. For ζ, we use the uniform prior
(−0.35, 0.35), i.e. we allow up to ∼ 25 per cent change with
respect to self–similar evolution out to z = 1. (We also in-
vestigate results assuming strictly self–similar evolution, i.e.
ζ = 0). For ηz, we use the uniform prior (−0.3, 0.3), i.e., we
allow up to ∼ 30 per cent evolution in the scatter to z = 1.

Departures from hydrostatic equilibrium and spheric-
ity introduce well-known biases in mass measurements from
X-ray data. Following M08, we assume a 25 per cent mean
bias, and 16 per cent scatter in the bias, with 20 per cent
systematic uncertainties in these values, as indicated by hy-
drodynamical simulations and weak lensing data.

4 INTEGRATED SACHS-WOLFE EFFECT

Through the integrated Sachs-Wolfe (ISW) effect, the low
multipoles of the temperature anisotropy power spectrum
of the CMB are sensitive to the growth of cosmic structure,
and therefore to dark energy and modified gravity models
(see e.g. Fang et al. 2008). The ISW effect arises when the
gravitational potentials of large scale structures vary with

5 B and sb are defined in Section 3.1.1 of M08. They parameterize
the bias, and the scatter in the bias, expected for hydrostatic mass
measurements from X-ray data.

c© 2008 RAS, MNRAS 000, 1–6
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Figure 1. CMB temperature anisotropy power spectra, Cl, for
γ = 0.55 (GR; best-fit ΛCDM model from the five-year WMAP
data) (solid, red line), and for values of γ lower than GR (dashed,
blue lines), and higher (dot-dashed, magenta lines). The lines are
equally spaced in γ. The data are more constraining for the lower
values of γ, which produce larger changes in the ISW effect and
significantly worse fits to the data. The dots and circles are the
unbinned and binned WMAP5 data, respectively.

time, yielding a net energetic contribution to the CMB pho-
tons crossing them.

On large scales, we calculate the transfer function due
to the ISW effect as (Weller & Lewis 2003)

∆ISW
l (k) = 2

Z

dt e−τ(t)φ′jl [k(t − t0)] (10)

where ‘prime’ denotes a derivative with respect to the con-
formal time t, t0 is the conformal time today, τ is the optical
depth to the last scattering, and jl(x) is the spherical Bessel
function for the multipole ℓ. Using the Poisson equation, we
calculate the variation in time of the gravitational potential,
φ, from the evolution of the matter density perturbations,
δρm. Differentiating the Poisson equation with respect to
conformal time we have

φ′ = −
4πG

k2

∂

∂t

`

a2 δρm

´

. (11)

The total transfer function is the sum of equation 10 and
the transfer function from the last scattering surface (LSS),
∆l(k) = ∆ISW

l (k) + ∆LSS
l (k). From this, we calculate the

anisotropy power spectrum of the temperature fluctuations
(Weller & Lewis 2003)

Cl = 4π

Z

dk

k
Pχ|∆l(k, t0)|

2 , (12)

where Pχ is the initial power spectrum. The ISW effect is
only relevant at z < 2. For this redshift range, we modify
camb to calculate the evolution of δ, and therefore φ′, using
equation 2. We calculate ∆ISW

l (k) at z = 2 using GR, and
use these values as initial conditions when evolving to z = 0

in the γ-model. Figure 1 shows the result of Cl for different
values of γ.

5 DATA ANALYSIS

We use the five-year WMAP CMB data (Dunkley et al.
2008; Komatsu et al. 2008, and references therein), SNIa
data from the UNION compilation of Kowalski et al. (2008),
the fgas measurements of Allen et al. (2008), and XLF
data from the BCS (z < 0.3, northern sky; Ebeling et al.
1998), REFLEX (z < 0.3, southern sky; Böhringer et al.
2004), MACS (0.3 < z < 0.7, ∼ 55 per cent sky cov-
erage; Ebeling et al. 2001, 2007), and 400sd (0 < z <
0.9, ∼ 1 per cent sky coverage; Burenin et al. 2007)
cluster samples. Adopting a luminosity limit of 2.55 ×
1044h−2

70 erg s−1 (0.1 − 2.4 keV), we use 78 clusters above
a flux limit of 4.4 × 10−12 erg s−1 cm−2 from BCS, 130
above 3.0 × 10−12 erg s−1 cm−2 from REFLEX, 34 above
2 × 10−12 erg s−1 cm−2 from MACS, and 30 above 0.14 ×
10−12 erg s−1 cm−2 from the 400sd survey.

We use a Metropolis MCMC algorithm to calculate
the posterior probability distributions of our model param-
eters. We use a modified version of the CosmoMC

6 code
(Lewis & Bridle 2002) that includes additional modules to
calculate the likelihood for the fgas experiment7 (Allen et al.
2008), and for the XLF experiment (M08).

We fit seven cosmological parameters: the mean phys-
ical baryon density, Ωbh2; the mean physical dark matter
density, Ωch

2; the (approximate) ratio of the sound hori-
zon at last scattering to the angular diameter distance, θ
(Kosowsky et al. 2002); the optical depth to reionization, τ ;
the adiabatic scalar spectral index, ns; the logarithm of the
adiabatic scalar amplitude, ln(As); and the growth index,
γ. We marginalize over seven other parameters that model
systematic uncertainties in the fgas analysis (see details in
Allen et al. 2008), and seven more that account for uncer-
tainties in the XLF analysis. For the SNIa analysis, we use,
as provided by Kowalski et al. (2008), a covariance matrix
that accounts for systematic uncertainties.

6 RESULTS

As shown in Allen et al. (2008) and references therein, the
combination of fgas, SNIa, and CMB data places tight con-
straints on the expansion history and Ωm. The addition of
the XLF data allows us to place tight constraints on γ. As-
suming the flat ΛCDM model, we obtain the results shown
in the left panel of figure 2. The marginalized values are sum-
marized in table 1. We find γ = 0.51+0.16

−0.15 for flat ΛCDM.
The results for a flat, constant w model, are shown in the
right panel of figure 2. Interestingly, when allowing w to
be free, we obtain similar constraints on γ = 0.44+0.17

−0.15 to
those obtained for the ΛCDM model. We also see an an-
ticorrelation between γ and w, wherein models close to a
cosmological constant (w = −1) are most consistent with
GR (γ ∼ 0.55). We have also investigated the effect of re-
laxing the assumption of flatness in the ΛCDM model and

6 http://cosmologist.info/cosmomc/
7 http://www.stanford.edu/∼drapetti/fgas module/
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Figure 2. 68 and 95 per cent confidence contours in the (left panel) Ωm, γ plane for the flat ΛCDM background model, and (right panel)
w, γ plane for the flat wCDM model, from the combination of XLF, CMB, SNIa, and fgas data.

Table 1. Marginalized 1σ constraints on γ, Ωm, and σ8 for the
range of expansion history models. For the flat wCDM model we
obtain w = −0.927+0.066

−0.074.

Models Ωm σ8 γ

flat ΛCDM 0.274+0.020
−0.018 0.819+0.047

−0.045 0.51+0.16
−0.15

flat wCDM 0.280+0.021
−0.019 0.808+0.052

−0.046 0.44+0.17
−0.15

non-flat ΛCDM 0.310+0.040
−0.029 0.763+0.056

−0.044 0.51+0.19
−0.16

find γ = 0.51+0.19
−0.16 , with no significant covariance between γ

and Ωk.
As discussed above, the low multipoles of the CMB

are also sensitive to the growth rate through the ISW ef-
fect. However, the constraining power of the ISW data is
not competitive to that of the XLF data, which dominate
the constraints on γ (for illustration, compare figure 1 with
the constraints on γ in figure 2). Note, however, that the
cross–correlation of the ISW effect with galaxy surveys (see
e.g. Ho et al. 2008) may provide competitive, additional con-
straint on γ.

For massive clusters, such as those in the cur-
rent XLF data set, self–similar evolution of the mass–
luminosity relation is a well–motivated theoretical pre-
diction (Bryan & Norman 1998). Current Chandra data
(Vikhlinin et al. 2008; Mantz et al. 2008, in prep.) show
good agreement with this prediction over the redshift range
spanned by the XLF data (z < 0.9). Under the assumption
of exact, strict self–similarity (ζ = 0), we find γ = 0.44+0.12

−0.11

for flat ΛCDM.

7 CONCLUSIONS

Combining fgas, SNIa, CMB and XLF data, we have simul-
taneously constrained the background evolution of the Uni-
verse and the growth of matter density fluctuations on cos-
mological scales, allowing us to search for departures from
GR. We parameterize the expansion history with simple
models that include late-time cosmic acceleration, taking
flat ΛCDM as our default model, but also investigating flat,

constant w models, and non–flat ΛCDM models. We pa-
rameterize the growth of cosmic structure using the growth
index, γ, which assumes the same scale dependence as GR,
but allows for time–dependent deviations from it.

We have performed MCMC analyses with seven (or
eight) interesting cosmological parameters, and an addi-
tional fourteen parameters to encompass conservative al-
lowances for systematic uncertainties. Marginalizing over
these allowances, we obtain the tightest constraints to date
on the growth index. For flat ΛCDM, we measure γ =
0.51+0.16

−0.15 . Allowing w or Ωk to be free, we obtain similar
constraints: γ = 0.44+0.17

−0.15 and γ = 0.51+0.19
−0.16 , respectively.

Currently, we find no evidence for departures from General
Relativity.

In the near future, improved XLF analyses should pro-
vide significantly tighter constraints on both γ and ζ, al-
lowing us to explore more complex modified gravity models.
Our results highlight the importance of X-ray cluster data,
and the potential of combined expansion history plus growth
of structure studies, for testing dark energy and modified
gravity models for the acceleration of the Universe.
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